2018年4月20日金曜日

生物学の基本 ①


次の 公理に基づいた 生物の理解を進める。

 

① 自己複製 ② えねるぎー代謝 ③環境適応と進化

 

 

 

1.生命の基本単位は細胞である。

 

 

2.生物は エネルギーを消費し変換する。

   その結果 体内環境を調整し、

    一定の状態を 安定して維持する。

 

 

3.種の遺伝的特徴は進化によってもたらされる。

 

 

4,遺伝子は形質遺伝の基礎である。

2018年4月12日木曜日

腎虚に効く スタチン !


https://www.nature.com/articles/srep38034

 

 

ふつうの スタチンが 腎臓にもポジテイブな効果!

 

があることが 実証 されているので、高齢者の

 

腎虚には スタチン+八味丸 がよろしい!!

 

ということになった。

 

その メカニズムとしては HDAC阻害による

 

抗炎症+抗菌 作用が 新たな柱として注目

 

されている。

 

特に、脂溶性スタチンには 細菌細胞膜との親和性

 

=取り込みのの速さ や Co-Reductase阻害即ち

 

 

還元酵素阻害(基質阻害)ということで、エノイルレダクタ~ゼ

 

の阻害も 期待され 安全安価な 多面的抗菌剤としての応用

 

=D リポジショニング の展開が 期待されている。。。

 

 

https://www.nature.com/articles/srep38034


2018年4月11日水曜日

Pyrrolidine-Boric Acid Catalyst 2018


C-Glycosidation of Unprotected Di- and Trisaccharide Aldopyranoses with Ketones Using Pyrrolidine-Boric Acid Catalysis

 

Chemistry and Chemical Bioengineering Unit, Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna, Okinawa 904-0495, Japan
J. Org. Chem., Article ASAP
DOI: 10.1021/acs.joc.8b00340
Publication Date (Web): March 29, 2018
Copyright © 2018 American Chemical Society
*E-mail: ftanaka@oist.jp.

Abstract

Abstract Image
 
 
C-Glycoside derivatives are found in pharmaceuticals, glycoconjugates, probes, and other functional molecules. Thus, C-glycosidation of unprotected carbohydrates is of interest. Here the development of C-glycosidation reactions of unprotected di- and trisaccharide aldopyranoses with various ketones is reported. The reactions were performed using catalyst systems composed of pyrrolidine and boric acid under mild conditions. Carbohydrates used for the C-glycosidation included lactose, maltose, cellobiose, 3′-sialyllactose, 6′-sialyllactose, and maltotriose. Using ketones with functional groups, C-glycosides ketones bearing the functional groups were obtained. The pyrolidine-boric acid catalysis conditions did not alter the stereochemistry of non-C–C bond formation positions of the carbohydrates and led to the formation of the C-glycosidation products with high diastereoselectivity. For the C-glycosidation of the carbohydrates under the pyrrolidine-boric acid-catalysis, the hydroxy group at the 6-position of the reacting aldopyranose was necessary to afford the product. Our analyses suggest that the carbohydrates form iminium ions with pyrrolidine and that boric acid forms B–O covalent bonds with the carbohydrates during the catalysis to forward the C–C bond formation.
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.joc.8b00340.
  • Figures S1–S5 and NMR spectra (compounds) (ZIP)




Explore by:

Metrics

Article Views: 437 Times
Received 6 February 2018
Published online 29 March 2018
Learn more about these metrics Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
+
More Article Metrics
Chemical & Engineering News: Latest News
ACS Axial: Your Bond With Chemistry Research

2018年4月10日火曜日

T-817 MA (2)



ラット 大脳皮質神経細胞にH2O2 を添加すると,

① 4 時間後に細胞内酸化還元状態の指標である
還元型グルタチオン(GSH)の低下が認められ,
② 24 時間後には細胞死が観察される(図3)(6).

これに対し,H2O2 処置の24  時間前に【T-817MA】
を培養系に添加すると,

③細胞内GSH の低下と細胞死は抑制された.

また,④ T-817MA の酸化ストレス抑制作用は,
直接的な抗酸化能とは異なるメカニズムであ
ることが示唆されている(6, 13).

2. 神経突起伸展の促進効果
AD 患者の剖検脳では神経細胞の軸索や樹状突起が
障害を受け,神経ネットワークが崩壊していると報告
されている(14).これに対して,神経突起伸展を促進
させる効果が知られている神経栄養因子は,種々の神
経変性疾患において神経ネットワークを再構築するこ
とが期待されている(4, 5).

T-817MA Structure 2010


The Toyamas Key Compoud: T-817MA was disclosed

 

in 2010.

 

 

https://www.jstage.jst.go.jp/article/fpj/136/1/136_1_11/_pdf/-char/ja

Co Solvent Optimization

Most importantly, given the hazards associated
with many of the widely used OES cosolvent components ,
we have identified an alternative, biobased solvent,
γ-valerolactone, as a suitable
cosolvent for formation of cellulose dissolving OESs
with [EMIm][OAc].

(While γ-butyrolactone also proved to be an excellent cosolvent,
significant concerns associated with its use in the preparation of
a dangerous drug of abuse, militate against its use.)

This offers significant improvements, with regards to safety profiles
and sourcing of solvents from renewable sources, for
large scaleprocessing of cellulose to form more sustainable materials.


■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssuschemeng.
6b02020.
Original weight percent solubility data, annotated
Mathematica code for database sorting, fitting coefficients
and sorted tables of solvents from the Catalán and
Laurence databases (PDF)


■ AUTHOR INFORMATION
Corresponding Author
*E-mail: j.l.scott@bath.ac.uk.
Notes
The authors declare no competing financial interest.
■ ACKNOWLEDGMENTS
The authors thank the UK Engineering and Physical Sciences
Research Council (EPSRC) for Ph.D. studentship funding for
R.H.W. and M.A.J. via the EPSRC Doctoral Training Centre in
Sustainable Chemical Technologies, University of Bath (Grant
No. EP/G03768X/1), and the British Council for funding via the
Global Innovation Initiative program, which, in particular,
facilitated UK/Brazilian collaboration. R.L.S., C.S.P., and
M.S.S. thank the Sao Paulo Research Foundation (FAPESP)
for financial support (Grants CEPID 2013/08293-7, 2014/
10448-1, and 2015/25031-1). RISM calculations were performed
at the Center for Computational Engineering and
Sciences (CCES) at University of Campinas, Brazil.
■ ABBREVIATIONS
IL: ionic liquid; [EMIm][OAc]: 1-ethyl-3-methylimidazolium
acetate; OES: organic electrolyte solution; RISM: referenceinteraction
site model; H-bond: hydrogen bond
■ REFERENCES
(1) Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose:
Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem.,
Int. Ed. 2005, 44, 3358−3393.

(2) Cross, C.; Bevan, E. Research on Cellulose, 1895−1900; Longmans,
Green and Co.: London, 1901.

(3) Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D.
Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124,
4974−4975.

(4) Zhang, H.; Wu, J.; Zhang, J.; He, J. 1-Allyl-3-methylimidazolium
Chloride Room Temperature Ionic Liquid: A New and Powerful
Nonderivatizing Solvent for Cellulose. Macromolecules 2005, 38, 8272−
8277.

(5) Vitz, J.; Erdmenger, T.; Haensch, C.; Schubert, U. S. Extended
Dissolution Studies of Cellulose in Imidazolium Based Ionic Liquids.
Green Chem. 2009, 11, 417−424.

(6) Zavrel, M.; Bross, D.; Funke, M.; Büchs, J.; Spiess, A. C. Highthroughput
Screening for Ionic Liquids Dissolving (Ligno-)cellulose.
Bioresour. Technol. 2009, 100, 2580−2587.

(7) Aaltonen, O.; Jauhiainen, O. The Preparation of Lignocellulosic
Aerogels from Ionic Liquid Solutions. Carbohydr. Polym. 2009, 75, 125−
129.

(8) Kosan, B.; Michels, C.; Meister, F. Dissolution and Forming of
Cellulose with Ionic Liquids. Cellulose 2008, 15, 59−66.
(9) Turner, M. B.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Production
of Bioactive Cellulose Films Reconstituted from Ionic Liquids.
Biomacromolecules 2004, 5, 1379−1384.
(10) Zhang, H.; Wang, Z. G.; Zhang, Z. N.; Wu, J.; Zhang, J.; He, J. S.
Regenerated-Cellulose/Multiwalled- Carbon-Nanotube Composite
Fibers with Enhanced Mechanical Properties Prepared with the Ionic
Liquid 1-Allyl-3-methylimidazolium Chloride. Adv. Mater. 2007, 19,
698−704.
(11) Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated
cellulose materials. Prog. Polym. Sci. 2016, 53, 169−206.
(12) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.;
Broker, G. A.; Rogers, R. D. Characterization and Comparison of
Hydrophilic and Hydrophobic Room Temperature Ionic Liquids
Incorporating the Imidazolium Cation. Green Chem. 2001, 3, 156−164.
(13) Hauru, L. K. J.; Hummel, M.; King, A. W. T.; et al. Role of Solvent
Parameters in the Regeneration of Cellulose from Ionic Liquid
Solutions. Biomacromolecules 2012, 13, 2896−2905.
(14) Abe, M.; Fukaya, Y.; Ohno, H. Fast and facile dissolution of
cellulose with tetrabutylphosphonium hydroxide containing 40 wt%
water. Chem. Commun. 2012, 48, 1808−1810.
(15) Wang, H.; Gurau, G.; Rogers, R. D. Ionic Liquid Processing of
Cellulose. Chem. Soc. Rev. 2012, 41, 1519−1537.
(16) Rinaldi, R. Instantaneous dissolution of cellulose in organic
electrolyte solutions. Chem. Commun. 2011, 47, 511−513.
(17) Ohira, K.; Yoshida, K.; Hayase, S.; Itoh, T. Amino Acid Ionic
Liquid as an Efficient Cosolvent of Dimethyl Sulfoxide to Realize
Cellulose Dissolution at Room Temperature. Chem. Lett. 2012, 41,
987−989.
(18) Huo, F.; Liu, Z.; Wang, W. Cosolvent or Antisolvent? A Molecular
View of the Interface between Ionic Liquids and Cellulose upon
Addition of another Molecular Solvent. J. Phys. Chem. B 2013, 117,
11780−11792.

(19) Zhao, Y.; Liu, X.; Wang, J.; Zhang, S. Insight into the Cosolvent
Effect of Cellulose Dissolution in Imidazolium-Based Ionic Liquid
Systems. J. Phys. Chem. B 2013, 117, 9042−9049.

(20) Velioglu, S.; Yao, X.; Devémy, J.; Ahunbay, M. G.; Tantekin-
Ersolmaz, S. B.; Dequidt, A.; Costa Gomes, M. F.; Pádua, A. A. H.
Thermodynamics of Cellulose Solvation in Water and the Ionic Liquid
1-Butyl-3-methylimidazolim Chloride. J. Phys. Chem. B 2014, 118,
14860−14869.

(21) Mostofian, B.; Smith, J. C.; Cheng, X. Simulation of a Cellulose
Fiber in Ionic Liquid Suggests a Synergistic Approach to Dissolution.
Cellulose 2014, 21, 983−997.

(22) Rabideau, B. D.; Agarwal, A.; Ismail, A. E. Observed Mechanism
for the Breakup of Small Bundles of Cellulose Iα and Iβ in Ionic Liquids
from Molecular Dynamics Simulations. J. Phys. Chem. B 2013, 117,
3469−3479.

(23) Andanson, J.-M.; Bordes, E.; Devemy, J.; Leroux, F.; Padua, A. A.
H.; Costa Gomes, M. F. Understanding the role of cosolvents in the
dissolution of cellulose in ionic liquids. Green Chem. 2014, 16, 2528−
2538.

(24) Xu, A.; Wang, J.; Wang, H. Effects of anionic structure and lithium
salts addition on the dissolution of cellulose in 1-butyl-3-methylimida-
ACS Sustainable Chemistry & Engineering Research Article
DOI: 10.1021/acssuschemeng.6b02020
ACS Sustainable Chem. Eng. 2016, 4, 6200−6207
6206

2018年4月4日水曜日

GPR 40 Agonist


Discovery of Potent and Orally Bioavailable Dihydropyrazole GPR40 Agonists


Research and Development, Bristol-Myers Squibb Co., P.O. Box 4000, Princeton, New Jersey 08540-4000, United States
J. Med. Chem., 2018, 61 (3), pp 681–694
DOI: 10.1021/acs.jmedchem.7b00982
Publication Date (Web): January 9, 2018
Copyright © 2018 American Chemical Society
*Phone: +1-609-466-5075. E-mail: jun.shi@bms.com.

Abstract

Abstract Image
G protein-coupled receptor 40 (GPR40) has become an attractive target for the treatment of diabetes since it was shown clinically to promote glucose-stimulated insulin secretion. Herein, we report our efforts to develop highly selective and potent GPR40 agonists with a dual mechanism of action, promoting both glucose-dependent insulin and incretin secretion. Employing strategies to increase polarity and the ratio of sp3/sp2 character of the chemotype, we identified BMS-986118 (compound 4), which showed potent and selective GPR40 agonist activity in vitro. In vivo, compound 4 demonstrated insulinotropic efficacy and GLP-1 secretory effects resulting in improved glucose control in acute animal models.
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jmedchem.7b00982. Full crystallographic data for compound 8 have been deposited to the Cambridge Crystallographic Data Center (CCDC reference no. 1559162) and can be obtained free of charge via the Internet at http://www.ccdc.cam.ac.uk.
  • Experimental procedures for the synthesis of compounds 3b35 and methods for in vitro and in vivo biological studies (PDF)
  • X-ray crystallographic data for 8 (CIF)
  • Molecular formula strings (CSV)




Explore by:


Metrics

Article Views: 1,684 Times
Received 5 July 2017
Published online 9 January 2018
Published in print 8 February 2018
Learn more about these metrics Article Views are the COUNTER-compliant sum of full text article downloads since November 2008 (both PDF and HTML) across all institutions and individuals. These metrics are regularly updated to reflect usage leading up to the last few days.

The Altmetric Attention Score is a quantitative measure of the attention that a research article has received online. Clicking on the donut icon will load a page at altmetric.com with additional details about the score and the social media presence for the given article. Find more information on the Altmetric Attention Score and how the score is calculated.
+
More Article Metrics


Chemical & Engineering News: Latest News



ACS Axial: Your Bond With Chemistry Research