Most importantly, given the hazards associated
with many of the widely used OES cosolvent components ,
we have identified an alternative, biobased solvent,
γ-valerolactone, as a suitable
cosolvent for formation of cellulose dissolving OESs
with [EMIm][OAc].
(While γ-butyrolactone also proved to be an excellent cosolvent,
significant concerns associated with its use in the preparation of
a dangerous drug of abuse, militate against its use.)
This offers significant improvements, with regards to safety profiles
and sourcing of solvents from renewable sources, for
large scaleprocessing of cellulose to form more sustainable materials.
■ ASSOCIATED CONTENT
*S Supporting Information
The Supporting Information is available free of charge on the
ACS Publications website at DOI: 10.1021/acssuschemeng.
6b02020.
Original weight percent solubility data, annotated
Mathematica code for database sorting, fitting coefficients
and sorted tables of solvents from the Catalán and
Laurence databases (PDF)
■ AUTHOR INFORMATION
Corresponding Author
*E-mail:
j.l.scott@bath.ac.uk.
Notes
The authors declare no competing financial interest.
■ ACKNOWLEDGMENTS
The authors thank the UK Engineering and Physical Sciences
Research Council (EPSRC) for Ph.D. studentship funding for
R.H.W. and M.A.J. via the EPSRC Doctoral Training Centre in
Sustainable Chemical Technologies, University of Bath (Grant
No. EP/G03768X/1), and the British Council for funding via the
Global Innovation Initiative program, which, in particular,
facilitated UK/Brazilian collaboration. R.L.S., C.S.P., and
M.S.S. thank the Sao Paulo Research Foundation (FAPESP)
for financial support (Grants CEPID 2013/08293-7, 2014/
10448-1, and 2015/25031-1). RISM calculations were performed
at the Center for Computational Engineering and
Sciences (CCES) at University of Campinas, Brazil.
■ ABBREVIATIONS
IL: ionic liquid; [EMIm][OAc]: 1-ethyl-3-methylimidazolium
acetate; OES: organic electrolyte solution; RISM: referenceinteraction
site model; H-bond: hydrogen bond
■ REFERENCES
(1) Klemm, D.; Heublein, B.; Fink, H.-P.; Bohn, A. Cellulose:
Fascinating Biopolymer and Sustainable Raw Material. Angew. Chem.,
Int. Ed. 2005, 44, 3358−3393.
(2) Cross, C.; Bevan, E. Research on Cellulose, 1895−1900; Longmans,
Green and Co.: London, 1901.
(3) Swatloski, R. P.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D.
Dissolution of Cellose with Ionic Liquids. J. Am. Chem. Soc. 2002, 124,
4974−4975.
(4) Zhang, H.; Wu, J.; Zhang, J.; He, J. 1-Allyl-3-methylimidazolium
Chloride Room Temperature Ionic Liquid: A New and Powerful
Nonderivatizing Solvent for Cellulose. Macromolecules 2005, 38, 8272−
8277.
(5) Vitz, J.; Erdmenger, T.; Haensch, C.; Schubert, U. S. Extended
Dissolution Studies of Cellulose in Imidazolium Based Ionic Liquids.
Green Chem. 2009, 11, 417−424.
(6) Zavrel, M.; Bross, D.; Funke, M.; Büchs, J.; Spiess, A. C. Highthroughput
Screening for Ionic Liquids Dissolving (Ligno-)cellulose.
Bioresour. Technol. 2009, 100, 2580−2587.
(7) Aaltonen, O.; Jauhiainen, O. The Preparation of Lignocellulosic
Aerogels from Ionic Liquid Solutions. Carbohydr. Polym. 2009, 75, 125−
129.
(8) Kosan, B.; Michels, C.; Meister, F. Dissolution and Forming of
Cellulose with Ionic Liquids. Cellulose 2008, 15, 59−66.
(9) Turner, M. B.; Spear, S. K.; Holbrey, J. D.; Rogers, R. D. Production
of Bioactive Cellulose Films Reconstituted from Ionic Liquids.
Biomacromolecules 2004, 5, 1379−1384.
(10) Zhang, H.; Wang, Z. G.; Zhang, Z. N.; Wu, J.; Zhang, J.; He, J. S.
Regenerated-Cellulose/Multiwalled- Carbon-Nanotube Composite
Fibers with Enhanced Mechanical Properties Prepared with the Ionic
Liquid 1-Allyl-3-methylimidazolium Chloride. Adv. Mater. 2007, 19,
698−704.
(11) Wang, S.; Lu, A.; Zhang, L. Recent advances in regenerated
cellulose materials. Prog. Polym. Sci. 2016, 53, 169−206.
(12) Huddleston, J. G.; Visser, A. E.; Reichert, W. M.; Willauer, H. D.;
Broker, G. A.; Rogers, R. D. Characterization and Comparison of
Hydrophilic and Hydrophobic Room Temperature Ionic Liquids
Incorporating the Imidazolium Cation. Green Chem. 2001, 3, 156−164.
(13) Hauru, L. K. J.; Hummel, M.; King, A. W. T.; et al. Role of Solvent
Parameters in the Regeneration of Cellulose from Ionic Liquid
Solutions. Biomacromolecules 2012, 13, 2896−2905.
(14) Abe, M.; Fukaya, Y.; Ohno, H. Fast and facile dissolution of
cellulose with tetrabutylphosphonium hydroxide containing 40 wt%
water. Chem. Commun. 2012, 48, 1808−1810.
(15) Wang, H.; Gurau, G.; Rogers, R. D. Ionic Liquid Processing of
Cellulose. Chem. Soc. Rev. 2012, 41, 1519−1537.
(16) Rinaldi, R. Instantaneous dissolution of cellulose in organic
electrolyte solutions. Chem. Commun. 2011, 47, 511−513.
(17) Ohira, K.; Yoshida, K.; Hayase, S.; Itoh, T. Amino Acid Ionic
Liquid as an Efficient Cosolvent of Dimethyl Sulfoxide to Realize
Cellulose Dissolution at Room Temperature. Chem. Lett. 2012, 41,
987−989.
(18) Huo, F.; Liu, Z.; Wang, W. Cosolvent or Antisolvent? A Molecular
View of the Interface between Ionic Liquids and Cellulose upon
Addition of another Molecular Solvent. J. Phys. Chem. B 2013, 117,
11780−11792.
(19) Zhao, Y.; Liu, X.; Wang, J.; Zhang, S. Insight into the Cosolvent
Effect of Cellulose Dissolution in Imidazolium-Based Ionic Liquid
Systems. J. Phys. Chem. B 2013, 117, 9042−9049.
(20) Velioglu, S.; Yao, X.; Devémy, J.; Ahunbay, M. G.; Tantekin-
Ersolmaz, S. B.; Dequidt, A.; Costa Gomes, M. F.; Pádua, A. A. H.
Thermodynamics of Cellulose Solvation in Water and the Ionic Liquid
1-Butyl-3-methylimidazolim Chloride. J. Phys. Chem. B 2014, 118,
14860−14869.
(21) Mostofian, B.; Smith, J. C.; Cheng, X. Simulation of a Cellulose
Fiber in Ionic Liquid Suggests a Synergistic Approach to Dissolution.
Cellulose 2014, 21, 983−997.
(22) Rabideau, B. D.; Agarwal, A.; Ismail, A. E. Observed Mechanism
for the Breakup of Small Bundles of Cellulose Iα and Iβ in Ionic Liquids
from Molecular Dynamics Simulations. J. Phys. Chem. B 2013, 117,
3469−3479.
(23) Andanson, J.-M.; Bordes, E.; Devemy, J.; Leroux, F.; Padua, A. A.
H.; Costa Gomes, M. F. Understanding the role of cosolvents in the
dissolution of cellulose in ionic liquids. Green Chem. 2014, 16, 2528−
2538.
(24) Xu, A.; Wang, J.; Wang, H. Effects of anionic structure and lithium
salts addition on the dissolution of cellulose in 1-butyl-3-methylimida-
ACS Sustainable Chemistry & Engineering Research Article
DOI: 10.1021/acssuschemeng.6b02020
ACS Sustainable Chem. Eng. 2016, 4, 6200−6207
6206